Matching von Angebot und Nachfrage Prototypenentwicklung als Transfermethode

Ulrike Winterwerber
Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Berlin, 14. November 2018

FBH: III/V-Halbleiter für neue Anwendungen & Märkte

Mikrowellen- und optoelektronische Komponenten – Schlüsselbauelemente für

- Gesundheit & Ernährung
 - UV-LEDs zur Trinkwasseraufbereitung; Diodenlaser für Zahnheilkunde, photodynamische Krebstherapie,
 Frischefleischscanner ...
- Klima & Energie
 - HF-Komponenten: hocheffiziente Leistungsverstärker mit neuartigen Verstärkerarchitekturen zur effizienten Energieumwandlung
- Mobilität
 - Komponenten für Green-Car-Technologien
 - Kfz-Sicherheit (Abstandswarnradar, Einparkhilfen ...)
- Sicherheit
 - THz-Technologien für bildgebende Sicherheitssysteme
- Kommunikation
 - Leistungsverstärker für die Mobilkommunikation

Ferdinand-Braun-Institut – Zahlen & Fakten

- 1992 gegründet, Mitglied der Leibniz-Gemeinschaft
- Gefördert durch das Land Berlin und die Bundesrepublik Deutschland
- Anwendungsorientierte Forschung & Entwicklung: Module, Pilot- & Kleinserien
- Personal: 290 (inkl. 140 Wissenschaftler
 & Doktoranden) aus 24 Nationen
- Budget/Umsatz: 33,0 M€ inkl. 19,0 M€ Drittmittel (2017)
- Partner von / Joint Labs:
 - Technische Universität Berlin
 - Humboldt-Universität zu Berlin
 - Goethe-Universität Frankfurt a. M.
 - Brandenburgische Technische Universität Cottbus-Senftenberg

Technologietransfer

Auftragsforschung

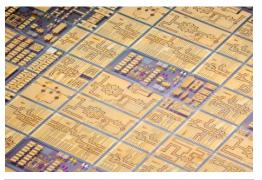
weltweit aktiv

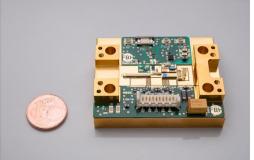
Strategische Partnerschaften

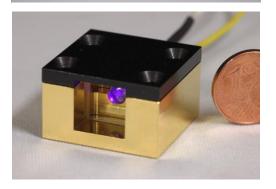
führende deutsche Technologieunternehmen

Arbeitsplätze und Wertschöpfung in der Region:

9 Spin-offs; Start-ups

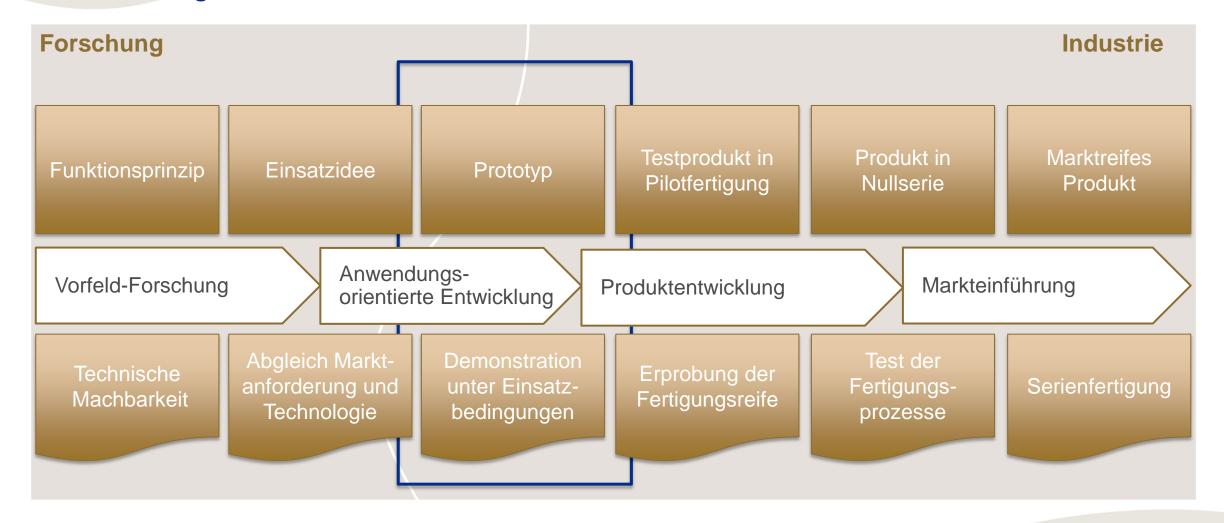

Patente


274 Patente in 71 Patentfamilien

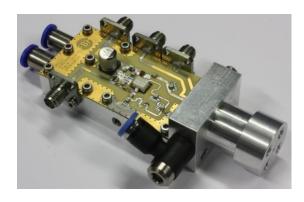

Transfer über Köpfe

Ausbildung und Abschlüsse

Prototypenentwicklung



Der Transfer in die Industrie kann durch Demonstratoren am Forschungsinstitut beschleunigt werden


Prototypen des FBH als Schnittstelle zwischen Forschung und Anwendung zwei Beispiele

Forschungsbauteil

UV LED

Mikrowellenschaltung für kaltes Plasma

Prototyp

LED-Strahler

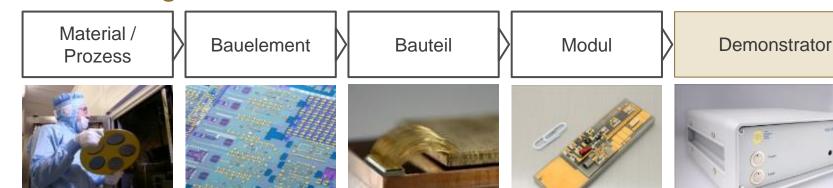
handliche Plasmaquelle für Druckkopf

Anwendung

gezielte Beeinflussung von Pflanzen als Basis für

- funktionelle Lebensmittel
- Naturkosmetik

Oberflächenaktivierung zum Bedrucken sensibler Materialien



Arbeitsgruppe für (wiss.) Gerätebau ergänzt die Wertschöpfungskette am FBH

EntwicklungsZentrum

Anpassungsentwicklung & Gerätebau für Einzelsysteme

Ressourcen

- Personal
 - 2 Ingenieure Elektronik
 - 1 Ingenieur Konstruktion
 - 1 Projekt- und Teamleitung
- Infrastruktur
 - neues, eigenes Labor



"Leibniz Innovationswerkstatt – Matching von Angebot und Nachfrage zwischen Wissenschaft und Wirtschaft"

Ziel InnoMatch: Demonstratoren mit Kooperationsmanagement verknüpfen (10/2016 – 09/2019)

Aspekte aus Marketing, Vertrieb und Kooperationsmanagement

gezielte Kontakte mit KMU, Anwendungsfälle umsetzen

EntwicklungsZentrum

Wissen über Technologie und Anwendungen ausbauen

Prototypenentwicklung führt nur dann zu Transfermaßnahmen, wenn eine Rückkopplung mit dem Anwender passiert

Ziel InnoMatch: Demonstratoren mit Kooperationsmanagement verknüpfen

Forschungsprogramm:

Diodenlaser Leistungselektronik UV-LEDs

. . .

Anwendung:

Desinfektion
Trinkwasseraufbereitung
Materialbearbeitung
Abstandssensorik
Mobilkommunikation

. . .

FBH Industrie

Prototypenentwicklung führt nur dann zu Transfermaßnahmen, wenn eine Rückkopplung mit dem Anwender passiert

Ziel InnoMatch: Demonstratoren mit Kooperationsmanagement verknüpfen

Forschungsprogramm:

Diodenlaser Leistungselektronik UV-LEDs

. . .

Spezifikation Anwender **KMU**

Anwendung:

Desinfektion
Trinkwasseraufbereitung
Materialbearbeitung
Abstandssensorik
Mobilkommunikation

Industrie

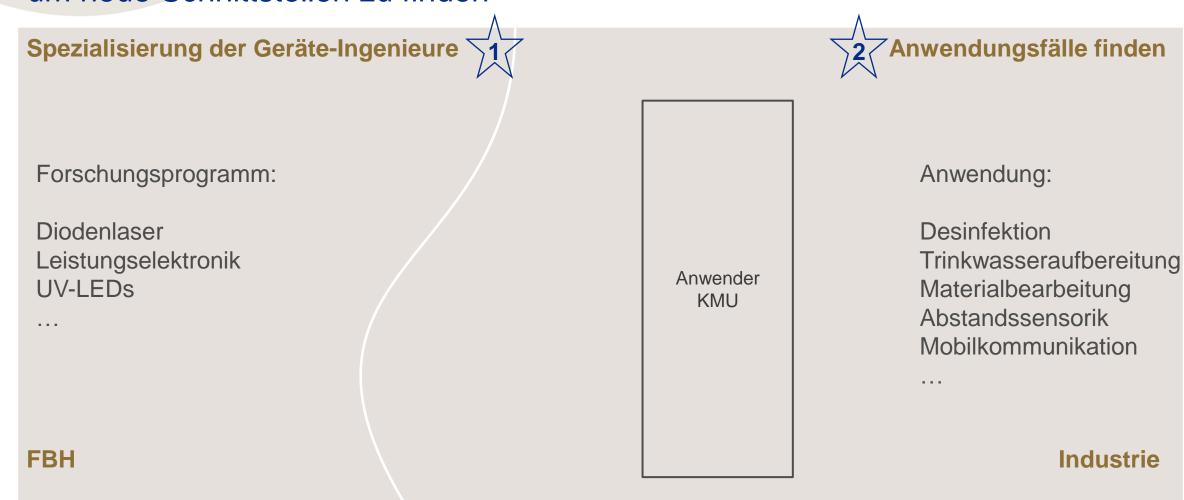
FBH

Prototypenentwicklung führt nur dann zu Transfermaßnahmen, wenn eine Rückkopplung mit dem Anwender passiert

Forschungsprogramm:

Diodenlaser
Leistungselektronik
UV-LEDs
...

Spezifikation
?


Anwender
KMU
Anwender
KMU
Anwender
KMU
Abstandssensorik
Mobilkommunikation

FBH

Industrie

Es ist notwendig, Forschungsprogramm und Anwendung besser zu verstehen, um neue Schnittstellen zu finden

Ein Prototyp-Angebot für konkrete Anwendungsfälle ermöglicht eine Rückkopplung mit Anwendern

anwendungsspezifische Workshops mit KMU

Forschungsprogramm:

Diodenlaser Leistungselektronik UV-LEDs

. . .

Spezifikation

Anwender KMU Anwendung:

Desinfektion
Trinkwasseraufbereitung
Materialbearbeitung
Abstandssensorik
Mobilkommunikation

Industrie

Ein Nachfrage-orientierter Prototyp vertieft die KMU-Kooperation

Prototyp für KMU und gegenseitige Hospitation 5

Forschungsprogramm:

Diodenlaser Leistungselektronik **UV-LEDs**

Spezifikation

Anwender **KMU**

Anwendung:

Desinfektion Trinkwasseraufbereitung Materialbearbeitung Abstandssensorik Mobilkommunikation

Industrie

Konkrete Maßnahmen, um mit Hilfe von Prototypen die spezifische Nachfrage bei Transferpartnern zu generieren und abzudecken

Vorhaben InnoMatch: Status Arbeitspakete

Prototypenbau in Iterationen ist ein sinnvoller aber aufwändiger Schritt, High-Tech-Forschung in KMU zu transferieren

Fazit

- Prototypenbau in Kombination mit gezieltem Kooperationsmanagement und Marketing-Instrumenten als erprobte Methode
 - Passgenaues Matching ermöglicht verstärkte Kooperation mit KMU
- Übertragbarkeit auf weitere Forschungseinrichtungen möglich
 - Schnittstellen zu weiteren Innovationswerkstätten vorhanden.

Ausblick

- Fördermaßnahmen fordern "Brücke zwischen Forschung und Anwendung"
- Notwendigkeit, das Technology-Readiness-Level anzuheben
- Kooperationen mit Unternehmen und Forschungspartnern erreichen dadurch höheres Niveau
- Verstetigung als etablierte Arbeitsgruppe am FBH

Thank you.

Ulrike Winterwerber Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik Berlin, 14. November 2018

